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Abstract
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1. Introduction

Cyber risk has rapidly become one of the most pressing threats in the banking sector,

commanding heightened attention from industry and regulators (Kashyap and Wether-

ilt, 2019; Duffie and Younger, 2019; The International Monetary Fund, 2024). Banks’

heavy reliance on digital infrastructure and online services has vastly expanded their

attack surface, exposing them to sophisticated cyber threats. A successful cyberat-

tack can impair payment systems, disrupt credit provision, and undermine confidence

in the broader financial system, creating channels for rapid contagion across institu-

tions (Eisenbach, Kovner, and Lee, 2022, 2025; Kopp, Kaffenberger, and Wilson, 2017).

Despite growing supervisory attention, there are no standardized measures of bank-

level cyber risk that supervisors or industry can apply across the sector. Existing ap-

proaches—largely disclosure-based or market-implied (Florackis, Louca, Michaely, and

Weber, 2023a; Jamilov, Rey, and Tahoun, 2023; Jiang, Khanna, Yang, and Zhou, 2024)—are

designed for large publicly traded firms and cannot be readily extended to include small

and mid-sized banks.

We assemble a bank-quarter panel that links externally observed cybersecurity pos-

ture, realized cyber incidents, and detailed balance sheet information representing the

entire U.S. banking sector. The dataset combines BitSight technical risk assessments, Zy-

wave incident reports, and FFIEC Call Report filings, allowing for consistent coverage of

banks of all sizes from 2015 through 2024.

BitSight provides standardized indicators of network hygiene, configuration practices,

and evidence of compromise, while Zywave classifies and dates cyber incidents using

proprietary monitoring. Call Reports supply quarterly financial and structural character-

istics for U.S. banks. Integrating these sources produces a unified framework for forward-

looking analysis of cyber vulnerability, enabling sector-wide assessment of how security

posture relates to future incidents and supporting the development of supervisory met-
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rics applicable beyond large, publicly traded institutions.

We begin by presenting descriptive statistics that summarize the cybersecurity land-

scape of U.S. banks. These include the cross-sectional distribution of technical security

indicators, the incidence and composition of cyber events over time, and systematic vari-

ation in these patterns by bank size and balance sheet characteristics. The key takeaways

from this exercise are twofold: first, while most banks score highly on core security met-

rics, there is meaningful dispersion—particularly in certain risk vectors—that leaves sub-

sets of institutions more exposed; and second, realized incidents are disproportionately

concentrated among the largest banks, consistent with their greater digital complexity

and visibility to attackers and with the key role of size in attacker incentives, as modeled

in equilibrium by Ramı́rez (2025).

We then evaluate the out-of-sample predictive content of cybersecurity posture and

bank characteristics for future incidents, where the dependent variable is a binary in-

dicator equal to one if the bank experiences at least one incident within the next year.

Using a quarterly random forest framework with dynamic feature selection—where the

most predictive cybersecurity indicators are re-estimated each quarter—we find that both

information sets contribute independent forecasting power. Models based solely on Bit-

Sight signals achieve an average out-of-sample AUC of 82.5, while bank-characteristics-

only models reach 86.2. Combining the two yields the highest average AUC of 89.8, an

improvement of over three percentage points relative to the best single-source specifica-

tion. This gain underscores the complementarity between externally observed security

posture and financial characteristics in predicting cyber events.

To ensure that the observed predictability is not simply capturing persistence in which

institutions report or experience incidents, we augment the combined model with lagged

incident history—defined as an indicator for whether the bank experienced a qualifying

event in the previous four quarters. A model using only this variable performs poorly,

indicating that recent history alone provides limited predictive value. When lagged inci-
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dents are added to the combined specification, the AUC rises only marginally, suggesting

that most of the forecasting power comes from contemporaneous security posture and

bank characteristics rather than mechanical recurrence of past events.

Next, we assess whether the model’s predictive power is concentrated in specific parts

of the banking sector or tied to a particular forecast window. Splitting the sample by

bank size shows consistently high accuracy across small, mid-sized, and large institu-

tions, underscoring that the combination of technical security signals and balance sheet

characteristics generalizes beyond the largest, most visible banks. Likewise, performance

remains strong for prediction horizons ranging from one quarter to one year, indicating

that the same predictors support both near-term monitoring and longer-term supervisory

assessments.

Finally, we compare our model performance to textual metrics developed in Florackis

et al. (2023a) and Jamilov et al. (2023) for public banks. Our model substantially outper-

forms the textual metrics, achieving out-of-sample AUC averaging around 90% versus

around 60% for each of the textual metrics. Adding the textual metrics to our model

results in a small performance improvement of around 1% AUC on average.

Beyond demonstrating high predictive accuracy, our analysis provides new insights

into the factors underlying cyber risk in the banking sector. Variable importance results

reveal that bank size and balance sheet composition—particularly total assets, deposits-

to-assets, and loans-to-assets—are among the most consistent predictors of incidents, ri-

valing or exceeding the importance of individual security indicators. On the cybersecu-

rity side, specific features such as patching cadence, TLS/SSL configuration, TLS/SSL

certificates, and DKIM records emerge as the most informative BitSight measures, while

several commonly tracked indicators, including botnet infections and spam propagation,

show limited relevance in recent years.

Interaction analysis further reveals that cyber vulnerability often reflects combinations

of risk factors rather than isolated weaknesses. For bank characteristics, the interaction
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between loans-to-assets and deposits-to-assets stands out, potentially capturing broader

customer relationships and a larger attack surface. Among security indicators, patching

cadence consistently interacts with multiple controls—most notably TLS/SSL configura-

tion and TLS/SSL certificates—suggesting that the co-occurrence of unpatched systems

and insecure communication protocols materially elevates incident risk. These patterns

underscore the value of combining operational and technical perspectives when assessing

cyber resilience and point to areas where supervisory attention could yield the greatest

risk reduction.

This paper contributes to three strands of literature: the study of cyber incidents as

a source of operational and systemic risk in banking, the measurement of firm-level cy-

ber risk exposures, and the policy discussion on supervisory tools for mitigating cyber

vulnerabilities.

First, a growing body of research documents the substantial and persistent financial

repercussions of cyber incidents. Between 2012 and 2017, major banks incurred roughly

$200 billion in operational risk losses, with cyber events consistently among the most sig-

nificant drivers The International Monetary Fund (2024). Empirical evidence shows that

breaches can erode franchise value and impair operations well beyond the immediate re-

mediation period. Kamiya, Kang, Kim, Milidonis, and Stulz (2021) find that firms suffer-

ing cyberattacks with customer data losses experience shareholder wealth declines far ex-

ceeding direct costs, as well as significantly lower sales growth for up to three years. Such

shocks can propagate beyond the affected institution, causing payment system disrup-

tions, reputational contagion, and heightened sector-wide risk perceptions. Chernobai,

Ozdagli, and Wang (2021) show that greater business complexity increases the frequency

of operational losses, while Berger, Curti, Mihov, and Sedunov (2022) demonstrate that

large operational losses can raise systemic risk through both direct solvency effects and

correlated losses across banks. Kopp et al. (2017) highlight how cyber risk can generate

market failures that threaten financial stability, motivating supervisory standards and col-
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lective action to enhance resilience. The International Monetary Fund (2024) emphasizes

that cyber risk has become a macrofinancial stability concern with systemic dimensions,

noting that severe incidents can impair critical financial infrastructure, trigger liquidity

strains, and generate broad confidence shocks. They stress that rising interconnectedness

and reliance on digital technologies amplify the potential for contagion across institutions

and borders, underscoring the need for coordinated supervisory responses and robust re-

silience frameworks. Our study extends this literature by documenting the incidence and

drivers of cyber events across the entire U.S. banking sector, providing the first system-

wide evidence that includes small and mid-sized banks absent from prior analyses.

Second, the analysis relates to research developing measures of firm-level cyber risk.

Florackis et al. (2023a) construct a disclosure-based index from cyber-related language

in 10-K filings, showing that it predicts future incidents and is priced in equity markets.

Similarly, Jamilov et al. (2023) derive a market-based “cyber risk exposure” factor from

earnings call transcripts, linking heightened cyber discussion to lower valuations, higher

volatility, and sizable aggregate costs even without realized attacks. Jiang et al. (2024) em-

ploy machine learning to create a predictive cyber risk index that outperforms individual

indicators and is associated with a positive risk premium. Ottonello and Rizzo (2024)

focus on the software supply chain as a source of cyber risk, showing that new software

vulnerabilities are a significant source of risk to which market participants react, but often

slowly. While these studies advance measurement, they focus almost exclusively on large

publicly traded firms with rich market or disclosure data.

Extending the scope to the banking sector, Murphy, Tindall, Klemme, Suek, and Dun-

bar (2025) combine external cybersecurity signals with financial structure information

to estimate average annual cyber loss rates for U.S. banks. Complementing these ap-

proaches, Eling and Wirfs (2019) use operational risk data to distinguish between routine

and extreme cyber event costs through actuarial and statistical techniques, identifying key

drivers—such as human error—that disproportionately affect financial institutions. Jin,
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Li, Liu, and Nainar (2023) link banks’ discretionary loan loss provisions — an indicator

of internal control and risk management quality — to the likelihood of future cyber at-

tacks, identifying an accounting-based early warning signal for cyber vulnerability. Heo

(2024) applies the textual metric of Florackis et al. (2023a) banks, finding that cyber risk

increases the probability of bank default. Gogolin, Lim, and Vallascas (2021) find that cy-

ber incidents decrease branch deposit growth rates at small banks, which they attribute

to reputational damage. Our work contributes along different dimensions, focusing on

ex-ante risk indicators, especially those with specific technological underpinnings, that

are applicable to nearly the entire US banking sector.

A distinct but related line of literature studies how banks react to the cyber risks of

their customers in setting loan terms. Huang and Wang (2021) finds that firms with re-

ported data breaches face higher loan spreads and increased likelihood of collateral re-

quirements and loan covenants. Sheneman (2025) reaches similar conclusions but focuses

on ex-ante risk, more in line with our approach. Whereas these papers study bank reac-

tions to customers’ cyber risks, we study the risks to banks themselves.

Third, the study contributes to the policy literature on cyber risk to the banking sector.

On the one hand, our work supports a partial market-based solution. Evidence that com-

mercially available risk-indicators are informative across the banking sector strengthens

incentives to invest in cybersecurity, as such investments are at least partially observable

to clients and counterparties who acquire the risk-indicators. Ahnert, Brolley, Cimon, and

Riordan (2024) investigate such costly signals in a theoretical model, finding that they

increase cybersecurity investment and welfare in equilibrium. However, they also show

that regulation offers avenues to further improve the equilibrium. Kashyap and Wetherilt

(2019) emphasize that cyber risk differs from other operational risks in its intentionality,

potential for stealth, and rapid propagation, and argue for supervisory frameworks tai-

lored to these features. Bouveret (2018) discuss the limitations of market discipline in

addressing systemic cyber threats, advocating for macroprudential oversight and cross-
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institutional contingency planning. Our analysis advances that agenda by producing a

supervisory-relevant measure of bank-level cyber vulnerability that integrates both ob-

servable security posture and fundamental institutional characteristics. The resulting risk

metric enables regulators to identify institutions most susceptible to future incidents, sup-

porting targeted oversight and macroprudential risk assessment in an increasingly digital

banking environment.

2. Data

Our analysis combines data from three primary sources: BitSight cybersecurity ratings,

Zywave cyber incident reports, and regulatory bank-level financial filings from the FFIEC

Call Reports. These datasets allow us to link observed security posture, realized cyber

events, and institutional characteristics at the bank-quarter level. BitSight provides ex-

ternal assessments of cybersecurity conditions based on technical signals collected from

internet-facing infrastructure. Zywave compiles detailed data on cyber incidents. Call

Reports contain standardized regulatory disclosures on bank size, balance sheet compo-

sition, and profitability. Together, these sources form a panel suitable for modeling the

determinants of cyber risk in the banking sector.

We use monthly BitSight cybersecurity ratings to quantify each bank’s external se-

curity posture based on a standardized set of risk vectors. The data include a range of

technical signals related to network hygiene, configuration practices, and evidence of

compromise, which we aggregate to the quarterly level. Specifically, available indica-

tors include measures such as patching cadence, TLS/SSL configuration, web application

headers, email authentication protocols (e.g., DKIM records), and botnet infection rates,

among others. These signals are derived from externally observable behaviors and vul-

nerabilities and are designed to capture an institution’s exposure to cyber threats across

multiple dimensions.1

1See here for more details: https://help.bitsighttech.com/hc/en-us/articles/
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Although BitSight cybersecurity ratings have been available for roughly a decade, we

are aware of little independent analysis assessing their predictive value out of sample

and none covering the banking sector. The study most comparable to ours is by Choi and

Johnson (2021), who evaluate BitSight ratings in relation to hospital cyber incidents. Al-

though there are many differences in statistical methodology and focus, the overall find-

ings are similar: BitSight scores, including some more granular scores, can be effective

for rank-ordering firms by incident risk when used in combination with industry-specific

firm characteristics. Caro Rincon and Ordóñez (2023) document the relationship between

BitSight’s overall security rating, incident rates, and distance to default for public com-

panies.2 Instead, we focus on banks, many of which are not public, and find that more

granular BitSight risk-indicators and firm characteristics are necessary to rank-order firms

within the industry. We also assess out of sample predictive performance using Zywave

incidents, as opposed to contemporaneous incidents provided by BitSight.

Figure 1 plots the distribution of BitSight cybersecurity risk vector scores in 2019 Q4

separately for small (< $1 billion), mid-sized ($1–10 billion), and large (> $10 billion)

banks. Each panel corresponds to one of the 16 available security metrics, with higher

values indicating better performance (i.e., lower observed risk) for that dimension. Most

indicators—such as botnet infections, patching cadence, open ports, and TLS/SSL certifi-

cates—show distributions tightly clustered near the upper end of the scale, reflecting gen-

erally strong cybersecurity posture across banks. However, some metrics exhibit wider

dispersion or pronounced lower tails, suggesting that certain institutions lag behind peers

in specific security practices. For example, DNSSEC and Web Application Security dis-

play notable variation, particularly among mid-sized banks. Overall, the distributions

indicate that while most banks maintain relatively high technical security scores, there re-

main measurable and heterogeneous weaknesses across several risk vectors, even within

the same size category.

360007320574-A-Guide-to-Navigating-and-Prioritizing-Bitsight-Risk-Categories-Risk-Vectors
2Moody’s, which produced the study, acquired an ownership stake in BitSight in 2021.
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Zywave provides detailed records of cyber incidents compiled from public records

and news sources using a proprietary tracking system. Each record includes the inci-

dent date, a standardized incident type (e.g., data malicious breach, phishing, spoofing,

social engineering, network/website disruptions, IT configuration or processing errors,

and fraudulent use or account access), and a text description indicating the severity of

the incident.3 For a subset of observations, the dataset also reports the number of affected

records or direct losses (e.g., from legal settlements), offering additional granularity on

breach magnitude. Each incident is associated with a unique Zywave firm identifier as

well as the domain name of the affected institution, which enables us to merge the data

with BitSight cybersecurity ratings and regulatory filings at the bank level.

To align the incident data with other sources, we transform the incident-level dataset

into a domain-by-quarter panel. We first restrict the sample to incidents falling into cat-

egories data malicious breach, phishing, spoofing, social engineering, network/website

disruptions, IT configuration or processing errors, and fraudulent use or account access.

Next we aggregate events by domain and calendar quarter. For each domain-quarter ob-

servation, we construct three binary indicators that serve as forward-looking outcomes

in our empirical analysis: whether the domain experienced at least one qualifying cyber

incident in the next quarter, in the next two quarters, or within the next four quarters.

Figure 2 plots the quarterly number of cyber incidents at U.S. banks by incident

type from 2015 through 2024. Malicious data breaches dominate throughout the sam-

ple period, accounting for the vast majority of reported events and exhibiting substantial

quarter-to-quarter volatility. Other categories—including phishing and social engineer-

ing, IT configuration errors, fraudulent account access, and network disruptions—occur

far less frequently and remain relatively stable over time. The persistent prevalence of

data breaches, combined with the steady presence of other incident types, highlights the

3Zywave reports both an ”accident date” and a potentially later ”first notice date” reflecting disclosure
for each incident. To ensure that our risk-indicators reflect vulnerabilities observable prior to the occurrence
of an incident we use accident dates in our study.
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ongoing exposure of the banking sector to a range of cyber threats and reinforces the

importance of forward-looking measures to monitor and mitigate these risks.

Figure 3 plots the percentage of banks experiencing at least one incident in each quar-

ter, segmented by bank size. Incident frequency is consistently highest among banks with

more than $10 billion in assets, peaking at over 20% of institutions in certain quarters.

Mid-sized banks ($1–10 billion) show moderate and somewhat volatile incident rates,

while small banks (less than $1 billion) rarely report incidents, remaining near or below

2% throughout. This distribution suggests that cyber risk is disproportionately concen-

trated among the largest institutions, consistent with their greater digital exposure, com-

plexity, and visibility to attackers.

We obtain regulatory financial data for U.S. banks from the FFIEC Call Reports, which

provide standardized quarterly information on bank balance sheets, income statements,

and off-balance-sheet exposures. From these filings, we construct a set of control vari-

ables commonly used in bank risk analysis: total assets, asset growth, return on equity,

deposits-to-assets, and loans-to-assets. These variables capture key dimensions of bank

size, growth, profitability, and funding structure, and are included in all model specifica-

tions. The Call Reports also contain the domain name of each reporting institution, which

we use to merge the financial data with external cybersecurity and incident records.

Table 1 compares the characteristics of banks included in our final analysis sample to

those excluded due to missing domain linkages, separately for each size category. Across

all size groups, in-sample banks tend to be larger and display stronger profitability and

balance sheet ratios than those not covered. For banks with over $10 billion in assets,

in-sample institutions are not only larger on average but also report higher deposit-to-

asset and loan-to-asset ratios. Among mid-sized banks ($1–10 billion), in-sample banks

have higher ROE (11.0% vs. 9.5%) and loan intensity. Even among smaller banks (less

than $1 billion), in-sample institutions are slightly larger and more profitable than those

excluded.
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The final dataset is structured as a bank-quarter panel that integrates three sources of

information. Each observation includes (i) current-quarter bank characteristics from Call

Reports, (ii) current-quarter BitSight cybersecurity signals, and (iii) forward-looking inci-

dent indicators from Zywave, defined over one-, two-, and four-quarter horizons. This

unified panel allows us to examine the relationship between observed security posture

and future cyber incidents while controlling for underlying institutional characteristics.

3. Cross-Bank Metric of Cyber Risk Exposure

This section develops and evaluates a predictive model of cyber incidents at the bank

level. We adopt a random forest classifier as our primary modeling approach. This

method is well-suited for capturing complex, non-parametric relationships and allows

for flexible interaction structures without requiring explicit specification. Later, Section 4

characterizes the main drivers of our model. We begin by conducting feature selection to

identify the most informative security signals from the BitSight dataset, then estimate the

random forest model using historical incident data from Zywave. Model performance

is evaluated based on the area under the receiver operating characteristic curve (AUC),

with all results reported using out-of-sample predictions.

3.1. Feature Selection

While BitSight provides an overall “Security Rating” intended to summarize an organi-

zation’s cyber risk posture, we do not use this composite score as our primary predictive

variable. For U.S. banks in our sample, the Security Rating alone exhibits limited discrim-

inatory power for future incidents, and its proprietary weighting obscures the relative

importance of underlying risk vectors. From a supervisory perspective, understanding

which specific security dimensions contribute to elevated risk is essential for designing

targeted interventions and monitoring emerging vulnerabilities. Our approach therefore
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focuses on modeling the granular BitSight feature set directly, allowing us to identify the

most informative predictors and assess their stability over time.

To identify the most informative cybersecurity signals for predicting cyber incidents,

we implement a sequential, out-of-sample feature selection procedure using quarterly

rolling windows. In each quarter q beginning in Q1 2017, we train a random forest

model on all available historical data prior to q (e.g., the Q1 2017 model is trained on data

from Q1 2015 through Q4 2016) and evaluate it on bank observations in quarter q. The

model includes a set of core control variables—log assets, asset growth, return on equity,

deposits-to-assets, and loans-to-assets—which are included in all specifications. These

variables are motivated by prior variable importance analysis and serve as fundamental

controls for bank size, growth, profitability, and funding structure. As documented in

earlier sections, incident rates vary meaningfully with bank size and balance sheet com-

position, justifying their inclusion as baseline covariates.

In each training window, we extract variable importance scores from the fitted random

forest and identify the top five features among those not included in the required bank

controls. These selected variables represent the most predictive cybersecurity-specific

signals—such as patching cadence, insecure ports, or evidence of malware—based on

their contribution to out-of-sample classification accuracy. By repeating this procedure

for each quarter starting in Q1 2017, we allow the feature set to vary over time as the

informativeness of different signals evolves. The selected features for each quarter are

then used in the final predictive model described in the following subsection.

Table 2 reports the top selected cybersecurity features for periods between 2017 Q2

and 2023 Q4. Several indicators appear consistently, suggesting their enduring relevance

for banks’ cyber vulnerability. DKIM is repeatedly selected, reflecting the importance of

maintaining robust email authentication to limit exposure to phishing and spoofing at-

tempts. TLS/SSL configuration and certificate management recur across periods, consis-

tent with the critical role of secure communication channels for online banking platforms
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and other internet-facing services. Web Application Security also appears frequently, in-

dicating that vulnerabilities in customer-facing or operational portals remain a persistent

concern. Patching cadence is a prominent predictor in later years, underscoring the value

of timely remediation of known vulnerabilities, especially in complex banking IT envi-

ronments.

Other signals, such as Botnet Infections and Potentially Exploited, appear only in spe-

cific intervals, which may partly reflect overfitting in the early, smaller sample period

rather than true shifts in threat activity. While some of these episodic features may cap-

ture genuine changes in the cyber landscape, their limited persistence cautions against

treating them as stable indicators. This reinforces the importance of focusing supervisory

and internal monitoring on consistently predictive measures, while treating transient pre-

dictors as context-dependent signals that require ongoing validation before incorporation

into long-term risk frameworks.

3.2. Random Forest Model

To assess the predictive value of bank characteristics and externally observed cyberse-

curity signals, we estimate a sequence of quarterly random forest models over the 2017

Q1–2024 Q4 period. Each model predicts whether a bank will experience a qualifying

cyber incident within the subsequent four quarters. We evaluate three predictor sets: (i)

bank characteristics alone, (ii) BitSight cybersecurity indicators from the feature-selection

procedure, and (iii) the combination of both. Out-of-sample performance is measured us-

ing the area under the receiver operating characteristic curve (AUC), with higher values

indicating greater ability to distinguish between banks that will and will not experience

a future incident.

Figure 4 presents the out-of-sample AUCs from models estimated each quarter from

2017 Q1 to 2024 Q4 using the three different sets of predictors. The red line corresponds

to models that include only bank characteristics—size, profitability, and balance sheet
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composition—as predictors. The blue dashed line reflects models that use only the se-

lected BitSight cybersecurity signals identified through the feature selection procedure

described earlier. The green dashed line shows the combined specification, incorporating

both bank characteristics and selected BitSight features. Each model is trained on all his-

torical data prior to the prediction quarter and evaluated on cyber incidents occurring in

the subsequent four quarters.

The results demonstrate that both bank characteristics and cybersecurity signals carry

independent predictive content. BitSight-only models achieve relatively strong perfor-

mance with AUCs generally in the 80–85 range. Bank characteristics alone also yield

consistent predictive power. Notably, the combined model consistently outperforms the

other two across nearly all quarters, with AUCs clustering around 90 and exhibiting less

volatility over time. This pattern suggests that cyber incident risk reflects both latent in-

stitutional characteristics (e.g., size, business complexity, risk management capacity) and

observable security posture as captured by network-level indicators. The performance

improvement from combining both sets of variables highlights the value of integrating

traditional supervisory data with external cyber risk signals when assessing banks’ digi-

tal vulnerability.

Aggregating model performance over time further illustrates these patterns. Figure

5 reports the mean out-of-sample AUC across all quarters for five model specifications,

including one that uses lagged incidents—defined as the occurrence of a cyber incident

at the bank within the past year—as predictors. The lag-incidents-only model attains a

much lower average AUC (68.2), indicating that recent incident history alone has limited

predictive value and alleviating concerns that our results are driven solely by persistence

of incidents at the same institutions or by reporting concentration.4 BitSight-only and

bank-characteristics-only models achieve average AUCs of 82.5 and 86.2, respectively,

while combining them yields 89.8. Adding lagged incidents to the combined model pro-

4For work on the propensity of firms to report cyber attacks, see Amir, Levi, and Livne (2018).
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duces only a marginal increase to 90.2, suggesting that most predictive power derives

from bank characteristics and cybersecurity signals rather than incident history. These

results confirm that the two information sets are complementary and that the joint speci-

fication consistently delivers the most accurate forecasts of future cyber incidents.

Figure 6 provides a validation of the model’s predictive power by examining realized

incident rates as a function of out-of-sample predicted risk. For each prediction quarter,

we aggregate banks into deciles based on their predicted probability of a cyber incident

in the next year (as estimated by the random forest model), and then calculate the actual

proportion of banks experiencing an incident within each probability bin. The results

reveal a monotonic relationship: as predicted risk increases, the observed incident rate

rises sharply.

This pattern is especially pronounced for banks with assets greater than $10 billion.

In the top decile of predicted probabilities, nearly 90% of large banks experience a cyber

incident in the subsequent year. By contrast, incident rates remain very low among in-

stitutions in the lowest deciles. The clear separation across predicted risk bins and size

groups underscores both the accuracy and practical utility of the model for supervisory

surveillance. The ability to identify those banks most likely to suffer cyber events pro-

vides a basis for targeted monitoring and risk management interventions.

3.3. Robustness

One important consideration in assessing model performance is whether predictive ac-

curacy varies systematically with bank size. Larger banks differ from smaller institutions

in several dimensions relevant to cyber risk—including IT infrastructure complexity, reg-

ulatory scrutiny, and public visibility—which may influence both the likelihood of inci-

dents and the observability of relevant security signals. To examine this, we use the same

random forest model with both bank characteristics and BitSight features separately for

three sub-samples: small banks (assets below $1 billion), mid-sized banks ($1–10 billion),
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and large banks (above $10 billion). This split allows us to evaluate whether the model’s

predictive content is robust across the size distribution, rather than being driven dispro-

portionately by one segment of the industry.

The results, shown in Figure 7 indicate that predictive performance remains strong

across all size categories, with AUCs consistently above 80 for most periods. Large banks

exhibit the highest and most stable AUCs suggesting that the model captures their cyber

risk well—likely reflecting richer and more reliable external security signals as well as

more frequent incident reporting. Mid-sized banks also show robust performance, with

AUCs generally above 85. Small banks, while somewhat more volatile, still achieve AUCs

well above chance levels, underscoring that the combined predictor set retains substantial

forecasting power even when applied to institutions with fewer observable signals and

potentially less complete incident reporting. Overall, the consistency of results across

size segments reinforces the general applicability of the model as a supervisory tool for

monitoring cyber risk throughout the banking sector.

We also test the robustness of our results to alternative prediction horizons, re-

estimating the same combined random forest model using forward-looking windows of

one quarter, two quarters, and one year. Figure 8 shows that predictive performance re-

mains consistently strong across all horizons, with AUCs generally in the 80–90 range.

The one-year horizon yields the most stable and slightly higher performance on aver-

age, while shorter horizons show greater quarter-to-quarter volatility—particularly the

one-quarter model, which experiences sharper fluctuations. Nevertheless, even at the

shortest horizon, the model retains substantial predictive power, indicating that the same

set of predictors is effective for both near-term and longer-term cyber risk forecasting.

These results confirm that the model’s forecasting ability is not tied to a specific horizon,

enhancing its practical utility for supervisory monitoring across different planning and

intervention timeframes.
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3.4. Comparison with Textual Metrics

An alternative way to measure exposure to cyber risk is the analysis of related public

disclosures by firms, on the basis that firms reveal some information about their exposure

to such risk or their ability to prevent incidents. Two prominent examples of this approach

are described in Florackis et al. (2023a) (FLMW), who analyze risk-factor information

from 10-Ks, and Jamilov et al. (2023) (JRT), who analyze quarterly earnings calls. In this

section we compare these metrics to our baseline model combining bank characteristics

and BitSight risk-indicators, evaluating each approach against Zywave incidents on a

uniform sample of banks. We confirm that both textual metrics have some ability to rank-

order banks by incident risk, but our model performs much better and mostly subsumes

information in the textual metrics.

Because our sample of banks is predominantly private whereas FLMW and JRT cover

public firms spanning many industries, the number of firms in the merged sample is quite

small. Scores from JRT match our quarterly frequency, whereas for FLMW we repeat

annual scores for each quarter. In addition, overlap in time is limited: our merged sample

begins in 2016 and ends in 2018.5 During this interval the set of banks available from all

sources is quite stable, with between 98 and 107 banks depending on the quarter.

We compare FLMW and JRT to two versions of our model. Both follow the fitting

and out-of-sample evaluation procedures described previously in this section, using bank

characteristics in Table 1 the set of BitSight variables included in Table 2, but applied to

the merged sample including FLMW and JRT scores. The second model variant adds the

scores of FLMW and JRT alongside other independent variables, to assess incremental

performance gains.

Figure 9 shows the results, evaluating performance by quarterly AUC. Although

FLMW and JRT generally achieve AUC above 50%, performance is variable and they
5BitSight coverage is limited during 2015, the first year for which it is available. We obtain cyber scores

for FLMW via the link provided in Florackis, Louca, Michaely, and Weber (2023b), and cyber scores for JRT
from Rustam Jamilov at https://users.ox.ac.uk/~econ0628/Cyber_Risk_Data.zip.
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each fall below 50% in one quarter. FLMW achieves a maximum AUC of around 65%

in 2017 Q1 whereas JRT achieves a maximum AUC of around 75% in 2017 Q3. In con-

trast our baseline model performs better and more consistently, with minimum AUC still

above 85% and maximum AUC around 95%. Adding FLMW and JRT scores to our model

improves performance slightly, by around 1% on average.

The superior performance of our model may be unsurprising given that it is special-

ized to the banking sector whereas FLMW and JRT are cross-industry metrics. However,

the comparison establishes that these textual metrics contain little information beyond

what is already captured by the combination of firm characteristics and BitSight risk-

indicators, at least for public banks.

4. Analysis of Explanatory Variables and Interpretation of

Results

Having established the practicality of our model for out of sample cyber incident predic-

tion, we now investigate the main drivers of the model in more detail. Which predictive

variables are the most important in the banking sector? How do they relate to incidents

and to each other? Since the focus of this section is interpretation rather than out of sam-

ple prediction, we investigate random forest models fitted to our full training sample,

from Q1 2015 through Q4 2023 – the same data available in the final quarter analyzed in

Section 3.

We begin by characterizing variable importance with all candidate variables included

in the model, then consider whether relative importance changes in models where sub-

sets of the variables are excluded, following the flow of Figure 10. Figure 10a compares all

independent variables according to two commonly used importance metrics: the mean

decrease in Gini impurity and mean decrease in classification accuracy due to permu-

tation. Gini impurity is used internally by the random forest algorithm, to select the
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variable within a candidate set that maximally decreases heterogeneity of class among

observations along each branch of the tree, i.e., splitting banks into those with incidents

and those without in our case. Permutation importance captures the reduction in clas-

sification accuracy when the values of a given variable are randomly shuffled. For each

metric, we normalize the sum of importance across variables to 100. In our case relative

variable importance is similar whether impurity or permutation is used, with a couple of

notable exceptions.

One result from Figure 10a is that bank characteristics are important to cyber risk. To-

tal assets, deposits/assets, and loans/assets are the three most important variables for

predicting incidents, a finding similar to that of Jiang et al. (2024) for public firm char-

acteristics that we extend to private banks. Total assets, in particular, has importance

roughly twice that of the most important BitSight variable, which is web application se-

curity. ROE and asset growth, the two remaining characteristics, are also in the top 10

candidate variables by impurity but are among the least important variables by permu-

tation, constituting the two cases for which impurity and permutation differ the most.

After web application security, the most important BitSight variables are TLS/SSL con-

figuration, DKIM records, TLS/SSL certificates, and patching cadence, consistent with

results of our feature selection process towards the end of the sample period. However,

BitSight variables potentially exploited, botnet infections, and spam propagation fall into

the bottom five candidate variables by importance based on the full training sample, de-

spite being among the most important variables at the beginning of our evaluation period

in 2017 (see Table 2).

In Section 4, we evaluated models with bank characteristics and BitSight risk-

indicators either separately or in combination. One possibility is that the relative im-

portance of some variables changes once correlated alternatives are included, e.g., that

BitSight variables proxy for bank characteristics or vice versa. Figure 10b and Figure 10b

show this is not the case, as the relative importance of characteristics and BitSight risk-
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indicators remains the same for each model variant.6

To investigate variable interactions in more detail, Figure 11 shows network visual-

izations of variable interactions. Node size and color tint indicate Gini impurity, whereas

edge linewidth and color tint indicate interaction importance according to the unnormal-

ized H-statistic of Friedman and Popescu (2008). The H-statistic is an unsigned measure

of variable interaction based on the mean squared difference between the model pre-

diction when two variables are allowed to interact (joint prediction) or not (synthesis

of uni-variate predictions). To reduce figure complexity and consistent with previously

discussed results, we focus on interactions within bank characteristics (Figure 11a) and

within BitSight risk-indicators (Figure 11b). Throughout our remaining analysis, we also

eliminate BitSight risk-indicators never included in our predictive model, per Table 2.

Figure 11a shows that the most important characteristics, such as total assets and

loans/assets, also have the strongest interactions with other characteristics on average.

However the strongest interaction is between loans/assets and deposits/assets. Al-

though these characteristics have a natural relationship, e.g., as deposits offer a stable

funding source for making loans, the interaction as regards cyber incident risk is novel.

In combination, the two variables might proxy for a large number of customer relation-

ships, both depositors and lenders, which could make the bank a more attractive target

or correspond to an increased attack surface. By contrast, the smallest interactions are

between asset growth and ROE and asset growth and deposits/assets.

Figure 11b shows interactions between selected BitSight variables. Since total assets is

overall the most important variable, we also plot interactions between it and the BitSight

variables; such interactions are, however, very small. In contrast to the results in Fig-

ure 11a for characteristics, the most important BitSight interactions do not generally orig-

inate from the most important variable, but rather from patching cadence, which rounds

out the top five BitSight variables by importance. The only large interaction not involving

6Of course, the absolute importance of each variable does drop when the variable set is expanded: the
figures normalize importances within each subset to 100, to emphasize relative values.
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patching cadence is between DKIM records and TLS/SSL certificates. Patching cadence

interacts strongly with all four other BitSight variables selected during the final part of

the evaluation period: web app. security, TLS/SSL configuration, TLS/SSL certificates,

and DKIM records. A natural interpretation is that the risk of an incident increases when

there is both unpatched software and a weakness in communication protocols.

We now investigate in detail the relationship between each of our selected variables

and incident rates as uncovered by the random forest model, via partial dependency

plots (PDP). Since random forests allow for general non-parametric dependencies, the

relationship between each predictive variable and incidents is most easily summarized

by plotting the model-implied incident probability conditional on the value of a selected

variable, taking expectations over other variable values according to the sample distribu-

tion.

Figure 12 shows the PDP for each bank characteristic, with annual incident probabil-

ities on a log scale on the y axes. In the top left plot, we see incident rates rising sharply

with the log of total assets, particularly in the transition between mid-sized and large

banks, consistent with the higher incident rate among large banks illustrated in Figure 3.

However, the PDP plot reveals a relationship between total assets and incidents that is

relatively flat within large banks and within small banks. The remaining PDP plots for

bank characteristics are, by contrast, unambiguously non-monotonic. Deposits/assets

and loans/assets are similar ”smirks” varying over a wide range, falling from approxi-

mately 15% annual incident probability for very small x-values to approximately 3% for

middle x-values before rising again to around 7% for large x-values. Asset growth and

ROE share similar ”smile” patterns, but vary over a narrow range of around 3-5% annual

incident probability. In short, banks that are near the extremes in terms of their growth

rate, asset composition, or liability composition are at higher risk of cyber incidents.

Figure 13 shows the PDP for each selected BitSight risk-indicator. First, we note that

variation in incident probabilities is less for BitSight variables than we observed for bank
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characteristics, with the exceptions of ROE and asset growth. However, most BitSight

variables have the expected relationship to incident probabilities – rising as the scores

fall – with incident probabilities increasing by at least 50% and in some cases doubling

conditional on very low scores. Very low scores are rare, but they are observed, and

incidents are also uncommon for small-and-medium-sized banks.7

However, Figure 13 includes a few curiosities worthy of remark, as not all relation-

ships are monotonic or of the expected sign. Web application security and TLS/SSL cer-

tificates both show incident probabilities counterintuitively increasing with scores in the

upper range, albeit modestly. This could reflect maximum scores (typically 820) as de-

fault values when no information about the risk-indicator is available, such that incident

probabilities match the higher unconditional mean for very high scores versus a lower

conditional mean with measurably good-but-not-perfect scores. Regardless of the under-

lying mechanism, the random forest shines in dealing with such local non-monotonicity

relative to more traditional linear models. Although we do not include results here, alter-

natives such as logistic regression generally find weaker predictive relationships, some-

times with point estimates of opposite sign, precisely because so many observations fall

near the top end of the score range, where variation is either uninformative or, worse,

blurs the distinction between confirmation of strong security and ”no data.” Since meth-

ods such as logistic regression must assign a single coefficient summarizing the global re-

lationship, murky relationships in small but frequently observed score ranges may dom-

inate.

Finally, there is one variable in Figure 13 where high scores are unambiguously and

counterintuitively ”bad news”: DKIM records, in the top-right plot. Although we lack a

conclusive explanation, we do find that the DKIM records score increases following an

incident, perhaps because it is an easy risk-indicator for firms to improve in response.

7That being said, botnet infections, potentially exploited, and spam propagation have relatively low
cross-sectional or time variation in general, which is one reason why these variables are not selected features
for much of our evaluation period.
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Since lagged-incidents are predictive of future incidents, this could explain why high

DKIM scores are associated with increased probability of an incident.

Before concluding, we revisit in more detail the most interesting set of interactions

between BitSight variables. Figure 14 shows pair-wise interaction heatmaps for the five

most important BitSight variables on the upper triangle, reprises univariate PDP plots on

the diagonal, and has scatterplots of observations colorized by model-implied incident

probability in the lower triangle. The figure serves two main purposes. First, recall that

patching cadence had the strongest interactions with other variables in Figure 11b, but the

H-statistic is unsigned, leaving the nature of the interaction ambiguous. The heatmaps

show that the model predicts the highest incident probabilities when patching cadence

is low and TLS/SSL certificates, TLS/SSL configuration, or web application headers is

low. This is consistent with our earlier interpretation that unpatched software combines

with weak communication protocols to increase incident risk. Second, the scatterplots

show that, although moderate and low scores are less common than high scores, they are

observed not only for individual variables but also for several combinations of variables.

Such combinations may be critical to identifying high incident risk.

5. Conclusion

This paper develops a sector-wide, forward-looking measure of cyber risk exposure for

the U.S. banking industry, combining externally observed cybersecurity posture, realized

incident data, and bank characteristics. By integrating BitSight’s granular technical risk

indicators with regulatory Call Reports and Zywave’s incident records, we construct a

bank-quarter panel covering institutions of all sizes from 2015 to 2024. Using a dynamic

feature-selection framework within a random forest model, we show that both cyber-

security posture and financial characteristics provide independent and complementary

predictive power for cyber incidents over the subsequent year.
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Our results are robust across bank sizes and prediction horizons, underscoring the

model’s applicability for supervisory monitoring throughout the sector. The analysis re-

veals that predictive accuracy does not rely on persistence in which banks experience

incidents, but instead reflects contemporaneous differences in network security prac-

tices, IT configuration hygiene, and institutional fundamentals. Moreover, by identifying

the specific technical risk vectors most closely associated with elevated incident prob-

abilities—such as patching cadence, TLS/SSL configuration, and web application secu-

rity—the framework yields actionable insights for targeted oversight and internal risk

management.

From a policy perspective, the findings highlight the value of integrating commercial

cyber risk indicators with supervisory data to generate timely, institution-specific mea-

sures of digital vulnerability. Such measures can support microprudential interventions

at the bank level as well as macroprudential assessments of systemic exposure to cyber

threats.
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Figure 1: BitSight Signal Distributions

This figure presents kernel density plots of BitSight cybersecurity indicator scores for
U.S. banks, grouped by total asset size: less than $1 billion (green), $1–$10 billion (blue),
and greater than $10 billion (orange). Each panel corresponds to one of 15 indicators, in-
cluding measures of malicious activity, patching practices, protocol configuration, and
software security. The x-axis shows the BitSight score, and the y-axis shows the esti-
mated density within each size category.
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Figure 2: Number of incidents at banks

Quarterly counts of reported cyber incidents at U.S. banks from 2015 to 2024, disaggre-
gated by incident category: data–malicious breach, identity–fraudulent use/account ac-
cess, IT–configuration/implementation errors, IT–processing errors, network/website
disruption, and phishing/spoofing/social engineering.
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Figure 3: Percent of banks with incidents

Time series of the percentage of banks experiencing at least one cyber incident, seg-
mented by asset size categories (less than $1 billion, $1–10 billion, and greater than $10
billion), from 2017 to 2024.
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Table 1: Bank Characteristics

This table reports summary statistics for banks in and out of the estimation sample,
grouped by asset size: greater than 10 billion, between 1 and 10 billion, and less than 1
billion. For each group, the table shows the number of banks (N), mean asset growth,
deposits-to-assets ratio, loans-to-assets ratio, return on equity (ROE), and total assets (in
thousands of USD).

Greater than 10bn 1 - 10bn Less than 1bn

Not in Sample In Sample Not in Sample In Sample Not in Sample In Sample

N 39 101 154 505 1, 692 2, 736

Asset Growth 2.029 2.761 3.774 2.796 1.826 1.973
Deposits/Assets 0.754 0.762 0.805 0.815 0.806 0.833
Loans/Assets 0.664 0.659 0.687 0.720 0.621 0.653
ROE 10.853 10.659 9.457 10.958 6.584 8.978
Total Assets 75, 313, 255 117, 259, 077 2, 465, 458 2, 732, 737 224, 905 284, 449
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Table 2: Selected Features

This table lists the BitSight cyber risk signals selected by the model in each period be-
tween 2017Q2 and 2023Q4. For each date range, the table shows the set of features
retained after the model’s feature selection process, which was applied quarterly. The
listed indicators include measures of system vulnerabilities, security configurations, and
potential exploit exposures, with some features appearing consistently across multiple
periods and others appearing only in specific intervals.

From To Selected Features

2017 Q2 2017 Q4 Botnet Infections, DKIM, Potentially Exploited, Spam Propoga-
tion, TLS/SSL Configuration

2018 Q1 2018 Q2 Botnet Infections, DKIM, Potentially Exploited, TLS/SSL Config-
uration, Web Application Security

2018 Q3 2022 Q3 DKIM, Patching Cadence, Potentially Exploited, TLS/SSL Con-
figuration, Web Application Security

2022 Q4 2023 Q4 DKIM, Patching Cadence, TLS/SSL Certificates, TLS/SSL Con-
figuration, Web Application Security
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Figure 4: Out-of-Sample Predictability - Quarterly

The figure plots quarterly out-of-sample predictability, measured by AUC, for three
model specifications: Bank Characteristics (solid red line), BitSight + Bank Character-
istics (dashed green line), and BitSight Only (dashed blue line), over the period from
2017 to 2024.
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Figure 5: Out-of-Sample Predictability - Mean

This figure presents mean out-of-sample predictability (AUC) for five model specifica-
tions. Models using only lagged incidents achieve the lowest predictive accuracy, while
those combining BitSight signals and bank characteristics perform substantially better.
The inclusion of lagged incidents alongside BitSight and bank characteristics produces
the highest mean AUC, marginally improving over the combined BitSight–bank charac-
teristics model. These results provide a clear comparison of the relative contribution of
different predictor sets to model performance.
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Figure 6: Out-of-Sample Predictability - Mean

This figure presents the distribution of actual cyber incidents across predicted proba-
bility deciles, segmented by bank size. The x-axis groups banks into deciles based on
their out-of-sample predicted probability of a cyber incident, and the y-axis reports the
observed percentage of banks within each decile that experienced an incident. Separate
series are shown for banks with assets less than 1 billion, between 1 and 10 billion, and
greater than 10 billion.
The plot allows for comparison of model calibration and discrimination across size
categories, highlighting differences in incident prevalence between low- and high-risk
deciles. It also facilitates visual assessment of how predicted risk translates into realized
outcomes within each asset class over the probability spectrum.
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Figure 7: Out-of-Sample Predictability - By Size

This figure plots quarterly out-of-sample predictability (AUC) from 2017 to 2024 sepa-
rately for banks with total assets less than $1 billion, $1–10 billion, and greater than $10
billion. Each line represents a size category: green for less than $1 billion, blue for $1–10
billion, and orange for greater than $10 billion.
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Figure 8: Out-of-Sample Predictability - By Incident Horizon

This figure presents the out-of-sample predictability (AUC) from 2017 to 2024, broken
down by prediction horizon. The solid red line corresponds to a one-quarter horizon, the
dashed blue line to two quarters, and the dashed green line to one year. The horizontal
axis marks calendar years, while the vertical axis measures predictability in percentage
AUC terms.
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Figure 9: Out-of-Sample Predictability - Comparison with Text Metrics

The figure compares our baseline model, BitSight + Bank Characteristics, with two alter-
native metrics based on textual analysis, developed in Florackis et al. (2023a) (FLMW)
and Jamilov et al. (2023) (JRT) respectively. Performance is assessed using AUC out-of-
sample, based on incident occurrence over the following year. Also shown are results
for the baseline model combined with textual metrics. Although FLMW and JRT achieve
AUC of around 60% on average, indicating better than random performance, our base-
line model performs much better, with average AUC above 90%. Adding textual metrics
to our model slightly improves performance, by about 1% on average.
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Figure 10: Importance of Independent Variables

This figure presents the variable importance results from the predictive model in three
panels. Panel (a) shows the relative ranking of all predictors using both impurity-based
and permutation measures. Panel (b) compares the contribution of firm characteristics
alone with their contribution when combined with BitSight risk indicators, while Panel
(c) compares the contribution of BitSight risk indicators alone with their contribution
when combined with firm characteristics. Color coding distinguishes the different vari-
able sets and importance measures across panels, providing a visual comparison of their
relative influence in the model.
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Figure 11: Variable Importance and Interaction Network

This figure presents network diagrams illustrating the importance and interactions of
variables within two groups: bank characteristics (panel a) and BitSight risk indicators
(panel b). Each diagram represents variables as nodes, with node size reflecting variable
importance and edge thickness representing the strength of interaction between vari-
ables. The color gradients correspond to the magnitude of variable importance (Vimp)
and interaction strength (Vint). Panel (a) displays the relationships among bank char-
acteristics, while panel (b) shows the relationships among risk indicators, with both
highlighting the most influential variables and strongest interactions in their respective
groups.
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Figure 12: Partial Dependence Plots – Bank Characteristics

This figure presents partial dependence plots for the five bank characteristics used in
the analysis. Each panel isolates the marginal effect of a single characteristic on the
predicted outcome, holding other variables constant. The horizontal axis in each plot
represents the range of observed values for the characteristic, and the vertical axis shows
the corresponding change in the predicted probability scale. These plots illustrate the
functional form of the relationship between each bank characteristic and the model’s
prediction.

0.03

0.10

0.30

8 12 16 20

Total Assets

0.03

0.10

0.30

0 5

Asset Growth

   

0.03

0.10

0.30

0 5 10 15 20 25

ROE

   

0.03

0.10

0.30

0.00 0.25 0.50 0.75 1.00

Deposits/Assets

   

0.03

0.10

0.30

0.00 0.25 0.50 0.75 1.00

Loans/Assets

   

42



Figure 13: Partial Dependence Plots – BitSight Risk-indicators

This figure presents partial dependence plots for the BitSight risk-indicators. Each panel
shows the relationship between a given risk-indicator and predicted incident likelihood,
holding other variables constant. The horizontal axis displays the range of the respective
indicator values, while the vertical axis shows the associated partial dependence.
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Figure 14: Pairwise Dependencies – Selected BitSight Risk-indicators

This figure displays pairwise partial dependence plots for selected BitSight risk-
indicators. The diagonal panels show the individual partial dependence of each vari-
able on the predicted probability. The upper triangle presents heatmaps of predicted
probabilities for each pair of variables, while the lower triangle contains scatter plots
of the underlying data points colored by predicted probability. Color gradients in the
heatmaps range from blue (lower predicted probability) to red (higher predicted prob-
ability), illustrating how predicted outcomes vary across the joint distribution of the
selected indicators.
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